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Previous numerical investigations of the stability and bifurcation properties of different nonlinear combina-
tion structures of spiral vortices in a counter-rotating Taylor-Couette system that were done for fixed axial
wavelengths are supplemented by exploring the dependence of the vortex phenomena waves on their wave-
length. This yields information about the experimental and numerical accessibility of the various bifurcation
scenarios. Also backward bifurcating standing waves with oscillating amplitudes of the constituent traveling
waves are found.
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Recently the stability exchange between traveling waves
�TWs� �1� and standing waves �SWs� of spiral vortices in the
Taylor-Couette system has been investigated by full numeri-
cal simulations and a coupled amplitude equation approxi-
mation �2�. TWs and SWs have a common onset as a result
of a primary, symmetry degenerate oscillatory bifurcation.
The SW solution is a nonlinear superposition of mirror sym-
metric, oppositely propagating TWs with equal amplitudes.
At onset either the TW or the SW solution is stable �3,4�.
Then, at larger driving there is a secondary bifurcation that
leads to a stability exchange between the two solutions. This
exchange is mediated by mixed patterns that establish in so-
lution space a connection between a pure TW and a pure SW.
The mixed structures consist of a superposition of oppositely
propagating TWs with temporally constant, nonequal ampli-
tudes. The TWs investigated in Ref. �2� are initially stable
while the SWs gain stability later on.

There is a second variety of mixed states in which the TW
amplitudes oscillate in time in counterphase. This stable so-
lution bifurcates out of the SW at even higher driving rates
via a Hopf bifurcation �5� in which the aforementioned SWs
lose their stability. These results have been found by full
numerical simulations of the vortex flow in a Taylor-Couette
system �6,7� with counter-rotating cylinders of radius ratio
�=0.5 with methods described in Ref. �8�. The calculations
were done for a fixed axial wavelength � by imposing axially
periodic boundary conditions �9�.

Here we investigate and show how stability, bifurcation
properties, and the spatiotemporal behavior of the aforemen-
tioned structures change with �. Thus, this report provides
information for future simulations and experiments with fi-
nite length setups and, say, nonrotating lids that close the
annular gap between the cylinders at the ends: Since the
height of the system influences the wavelength of the vortex
structures and with it their properties the prior knowledge of
their � dependence is of significant interest.

Structures. The following structures have been investi-
gated. �i� Forward bifurcating TWs consisting of left-handed
spiral vortices �L-SPI� or of right-handed spiral vortices �R-
SPI� that are mirror images of each other. L-SPI �R-SPI�

travel in the annulus between the two cylinders axially into
�opposite to� the direction of the rotation frequency vector of
the inner one, i.e., in our notation upwards �downwards� �8�.
�ii� Forward bifurcating SWs that consist of an equal-
amplitude nonlinear combination of L-SPI and R-SPI. These
SWs are called ribbons �RIBs� in the Taylor-Couette litera-
ture �10,11�. �iii� So-called cross-spirals �CR-SPI�, i.e., com-
binations of L-SPI and R-SPI with different stationary am-
plitudes. They provide a stability transferring connection
between TW and SW solution branches �2,6�. And, finally,
�iv� oscillating cross-spirals �O-CR-SPI�. Therein, the ampli-
tudes of the TW constituents of the SW, i.e., the amplitudes
of L-SPI and the R-SPI oscillate in counterphase around a
common mean �5�. The vortex structures �i�–�iv� are axially
and azimuthally periodic with axial wave number k=2� /�
and azimuthal wave number M =2 in our case.

Control and order parameters. The control parameters are
the Reynolds numbers R1�0 and R2�0 defined by the ro-
tational velocities of the inner and outer cylinder, respec-
tively. As order parameters we use the amplitudes

A�t� = u2,1�t�, B�t� = u2,−1�t� �1�

of the dominant critical modes of the radial velocity u at
midgap in the double Fourier decomposition in azimuthal
and axial direction. In Eq. �1� the indices m=2 and n= �1
identify azimuthal and axial modes, respectively. Note that
for SPI, CR-SPI, and RIB structures investigated here the
moduli in Eq. �1� are constant. On the other hand, in O-CR-
SPI the moduli �A�t�� and �B�t�� oscillate in counterphase
around a common mean. Therefore we use the difference of
the squared moduli D�t�= ��A�t��2− �B�t��2� /2 and its oscilla-

tion amplitude D̃ to describe the bifurcation from the RIB

solution �D̃=0� to O-CR-SPI �D̃�0�.
� dependence of the bifurcation scenario. Figure 1 shows

the � dependence of the bifurcation thresholds R1
0 for M =1

and M =2 SPI and RIB and M =0 Taylor vortex flow. These
results were obtained from a linear stability analysis �12� of
the basic circular Couette flow. For the two characteristic
values R2=−540 and −605 shown there the M =2 SPI
and RIB have the lowest threshold for a wide range of
0.8���2.1.*kontakt@alexander-pinter.de
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In Fig. 2 we show for different � bifurcation diagrams as
functions of R2 for a fixed R1=240. For 1���1.2, figure
parts �a�–�c�, the bifurcation properties are quite similar: SPI
and RIB bifurcate supercritically out of the circular Couette
flow, SPI �RIB� are unstable �stable� at onset, and there is no
stability exchange in the range of R2 of Fig. 2. By contrast,
for �=1.3 and 1.4, in �d� and �e�, respectively, there are
different interesting stability exchanges. Here, L-SPI �A
�0,B=0� and R-SPI �A=0,B�0� are initially stable while
the RIB state �A=B� is initially unstable. But RIB gain sta-
bility almost immediately thereafter: the stability transfer
from L-SPI or R-SPI to RIB is mediated within a very small
interval by the L-CR-SPI ��A�� �B�� or the R-CR-SPI ��B�
� �A�� solution, respectively �2�. For larger driving, the RIB
lose stability again, when stable oscillating structures, O-CR-
SPI, appear via a Hopf bifurcation �5�. Note, however, that
O-CR-SPI bifurcate forward for �=1.3 but backward for �
=1.4, see details further below.

In Fig. 3 we show bifurcation diagrams as a function of �
for R1=240 and two different R2 indicated by arrows in Fig.
2. In the case of R2=−595 �right arrow in Fig. 2� SPI are
unstable and RIB are stable for all �. For R2=−605 �left
arrow in Fig. 2�, on the other hand, this stability situation—
RIB are stable and SPI are unstable—applies only as long as
��1.25: Then, with increasing �, a stability exchange be-
tween RIB and SPI via CR-SPI occurs that is reflected also at
the very left end of the bifurcation diagram in Fig. 2�d�. So,
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FIG. 2. �Color online� Influence of the axial wavelength � on
the bifurcation behavior for fixed R1=240. Solid �open� symbols
denote stable �unstable� structures. Symbols show L-SPI �red
circles, A�0,B=0�, L-CR-SPI �violet triangles, �A�� �B��, RIB
�blue diamonds, A=B�, and stable O-CR-SPI �magenta�. In the lat-
ter �A�t�� and �B�t�� oscillate between the + and − symbols. In �d�
and �e� only stable structures are shown. The arrows refer to the R2

values of Fig. 3.
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FIG. 1. Bifurcation thresholds R1
0 of M =0 Taylor vortex flow

and of SPI and RIB with azimuthal wave numbers M =1 and
M =2 versus axial wavelength � for different R2 as indicated.
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FIG. 3. �Color online� Bifurcation diagrams of L-SPI �red
circles, A�0,B=0�, RIB �blue diamonds, A=B�, and L-CR-SPI
�violet triangles, �A�� �B�� as a function of the axial wavelength �
for fixed R1=240 and the two values of R2 that are indicated by
arrows in Fig. 2. Solid �open� symbols denote calculated stable
�unstable� structures. Full �dashed� lines for stable �unstable� solu-
tions branches result from a spline interpolation. However, the vio-
let L-CR-SPI branches are schematic.

BRIEF REPORTS PHYSICAL REVIEW E 78, 017303 �2008�

017303-2



the interesting stability exchange between TWs and SWs oc-
curs in a rather narrow wave number band around ��1.3.

In Figs. 2 and 3, we showed the case where stability is
transferred from L-SPI to RIB. The symmetry degenerated
situation where stability is transferred from R-SPI to RIB via
R-CR-SPI is obtained by exchanging �the symbols for� A and
B in these figures.

Phase diagram for �=1.3. In view of the above discussed
stability exchange process we take a more detailed look at
the case �=1.3 for which previous calculations have been
done only at the two Reynolds numbers R1=200 and 240
�2,5,13�. To that end we provide in Fig. 4 the phase diagram
of the stable, aforementioned M =2 vortex structures with
fixed �=1.3 in the R1-R2-parameter plane. Stable M =2 SPI
appear first via a primary forward bifurcation at the lower
left border of the red stripe in Fig. 4 �14�. Then, for a fixed
R1	190, we have observed with increasing R2 always the
same stability transfer sequence

SPI → CR-SPI → RIB → O-CR-SPI.

For lower R1, however, the existence range of stable M =2
structures seems to be more and more confined from above
by the appearance of M =1 modes at the respective bifurca-
tion threshold �dashed line�: With decreasing R1 first the
O-CR-SPI and then the RIB and CR-SPI areas are pinched

off successively. Note that in all cases the CR-SPI stripe is
extremely thin �cf. the blow-up bar in Fig. 4� whereas the
O-CR-SPI area being quite large should facilitate a respec-
tive experimental observation.

Backward bifurcating O-CR-SPI. As noted already in the
discussion related to Fig. 2�e�, we have found for the first
time backward bifurcating O-CR-SPI. In Fig. 5 we display
for fixed �=1.4 and R2=−605 as a representative example
the bifurcation properties of this new scenario. Figure 5�a�
shows the squared moduli �A�2 and �B�2 as a function of R1.
Diamonds show stable RIB. They have obtained their stabil-
ity from the SPI via a CR-SPI branch connection at smaller
R1 outside the plot range of Fig. 5.

The + and − signs denote the maximal and minimal am-
plitudes, respectively, of the modes A and B that oscillate in
counterphase in the O-CR-SPI. The hysteresis in the transi-
tion between stable RIB and stable O-CR-SPI is best visible

with the order parameter D̃ in Fig. 5�b�.
Conclusion. Our results show that the mixed states of sta-

tionary CR-SPI and of O-CR-SPI should be observable in
experimental setups or in finite lengths numerical simula-
tions when the wavelength of these vortex structures lies in
the interval of 1.3���1.4. Therein O-CR-SPI are stable in
a wide range of control parameters. They bifurcate either
forward or, as we have found here, backward out of the RIB
state of standing waves. CR-SPI solutions, on the other hand,
exist only in a rather small interval of control parameters.
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FIG. 4. �Color�. Phasediagram of stable SPI, CR-SPI, RIB, and
O-CR-SPI. In the colored areas these vortex structures �as indicated
by the color code� with azimuthal wave number M =2 and axial
wavelength �=1.3 are stable. The white area has not been investi-
gated in this work. The basic state of circular Couette flow is stable
in the dotted region: Lines are marginal stability boundaries of cir-
cular Couette flow against growth of vortex flow with �=1.3 and
azimuthal wave numbers M =2 �full�, M =1 �dashed�, and M =0
�dotted�. The bar shows a blow-up of the region between the black
arrows.
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FIG. 5. �Color online�. Backward bifurcation of O-CR-SPI �ma-
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lation amplitude D̃ of D= ��A�2− �B�2� /2 is shown in �b�. For RIB

D̃=D=0. Full �dashed� lines denoting stable �unstable� solutions
were obtained by spline interpolation.
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�1� Throughout this manuscript we use the following abbrevia-
tions. TW: traveling wave, SW: standing wave, SPI: spiral vor-
tices, L-SPI: left-handed spiral vortices, R-SPI: right-handed
spiral vortices, RIB: ribbon, CR-SPI: cross-spirals, O-CR-SPI:
oscillating cross-spirals.
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